Skip to content

nn Module

Ultralytics nn module contains 3 main components:

  1. AutoBackend: A module that can run inference on all popular model formats
  2. BaseModel: BaseModel class defines the operations supported by tasks like Detection and Segmentation
  3. modules: Optimized and reusable neural network blocks built on PyTorch.

AutoBackend

Bases: nn.Module

Source code in ultralytics/nn/autobackend.py
class AutoBackend(nn.Module):

    def __init__(self, weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
        """
        Ultralytics YOLO MultiBackend class for python inference on various backends

        Args:
          weights: the path to the weights file. Defaults to yolov8n.pt
          device: The device to run the model on.
          dnn: If you want to use OpenCV's DNN module to run the inference, set this to True. Defaults to
        False
          data: a dictionary containing the following keys:
          fp16: If true, will use half precision. Defaults to False
          fuse: whether to fuse the model or not. Defaults to True

        Supported format and their usage:
            | Platform              | weights          |
            |-----------------------|------------------|
            | PyTorch               | *.pt             |
            | TorchScript           | *.torchscript    |
            | ONNX Runtime          | *.onnx           |
            | ONNX OpenCV DNN       | *.onnx --dnn     |
            | OpenVINO              | *.xml            |
            | CoreML                | *.mlmodel        |
            | TensorRT              | *.engine         |
            | TensorFlow SavedModel | *_saved_model    |
            | TensorFlow GraphDef   | *.pb             |
            | TensorFlow Lite       | *.tflite         |
            | TensorFlow Edge TPU   | *_edgetpu.tflite |
            | PaddlePaddle          | *_paddle_model   |
        """
        super().__init__()
        w = str(weights[0] if isinstance(weights, list) else weights)
        nn_module = isinstance(weights, torch.nn.Module)
        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
        fp16 &= pt or jit or onnx or engine or nn_module  # FP16
        nhwc = coreml or saved_model or pb or tflite or edgetpu  # BHWC formats (vs torch BCWH)
        stride = 32  # default stride
        cuda = torch.cuda.is_available() and device.type != 'cpu'  # use CUDA
        if not (pt or triton or nn_module):
            w = attempt_download(w)  # download if not local

        # NOTE: special case: in-memory pytorch model
        if nn_module:
            model = weights.to(device)
            model = model.fuse() if fuse else model
            names = model.module.names if hasattr(model, 'module') else model.names  # get class names
            model.half() if fp16 else model.float()
            self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
            pt = True
        elif pt:  # PyTorch
            from ultralytics.nn.tasks import attempt_load_weights
            model = attempt_load_weights(weights if isinstance(weights, list) else w,
                                         device=device,
                                         inplace=True,
                                         fuse=fuse)
            stride = max(int(model.stride.max()), 32)  # model stride
            names = model.module.names if hasattr(model, 'module') else model.names  # get class names
            model.half() if fp16 else model.float()
            self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
        elif jit:  # TorchScript
            LOGGER.info(f'Loading {w} for TorchScript inference...')
            extra_files = {'config.txt': ''}  # model metadata
            model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
            model.half() if fp16 else model.float()
            if extra_files['config.txt']:  # load metadata dict
                d = json.loads(extra_files['config.txt'],
                               object_hook=lambda d: {int(k) if k.isdigit() else k: v
                                                      for k, v in d.items()})
                stride, names = int(d['stride']), d['names']
        elif dnn:  # ONNX OpenCV DNN
            LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
            check_requirements('opencv-python>=4.5.4')
            net = cv2.dnn.readNetFromONNX(w)
        elif onnx:  # ONNX Runtime
            LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
            check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
            import onnxruntime
            providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
            session = onnxruntime.InferenceSession(w, providers=providers)
            output_names = [x.name for x in session.get_outputs()]
            meta = session.get_modelmeta().custom_metadata_map  # metadata
            if 'stride' in meta:
                stride, names = int(meta['stride']), eval(meta['names'])
        elif xml:  # OpenVINO
            LOGGER.info(f'Loading {w} for OpenVINO inference...')
            check_requirements('openvino')  # requires openvino-dev: https://pypi.org/project/openvino-dev/
            from openvino.runtime import Core, Layout, get_batch  # noqa
            ie = Core()
            if not Path(w).is_file():  # if not *.xml
                w = next(Path(w).glob('*.xml'))  # get *.xml file from *_openvino_model dir
            network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
            if network.get_parameters()[0].get_layout().empty:
                network.get_parameters()[0].set_layout(Layout("NCHW"))
            batch_dim = get_batch(network)
            if batch_dim.is_static:
                batch_size = batch_dim.get_length()
            executable_network = ie.compile_model(network, device_name="CPU")  # device_name="MYRIAD" for Intel NCS2
            stride, names = self._load_metadata(Path(w).with_suffix('.yaml'))  # load metadata
        elif engine:  # TensorRT
            LOGGER.info(f'Loading {w} for TensorRT inference...')
            import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download
            check_version(trt.__version__, '7.0.0', hard=True)  # require tensorrt>=7.0.0
            if device.type == 'cpu':
                device = torch.device('cuda:0')
            Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
            logger = trt.Logger(trt.Logger.INFO)
            with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
                model = runtime.deserialize_cuda_engine(f.read())
            context = model.create_execution_context()
            bindings = OrderedDict()
            output_names = []
            fp16 = False  # default updated below
            dynamic = False
            for i in range(model.num_bindings):
                name = model.get_binding_name(i)
                dtype = trt.nptype(model.get_binding_dtype(i))
                if model.binding_is_input(i):
                    if -1 in tuple(model.get_binding_shape(i)):  # dynamic
                        dynamic = True
                        context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
                    if dtype == np.float16:
                        fp16 = True
                else:  # output
                    output_names.append(name)
                shape = tuple(context.get_binding_shape(i))
                im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
                bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
            binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
            batch_size = bindings['images'].shape[0]  # if dynamic, this is instead max batch size
        elif coreml:  # CoreML
            LOGGER.info(f'Loading {w} for CoreML inference...')
            import coremltools as ct
            model = ct.models.MLModel(w)
        elif saved_model:  # TF SavedModel
            LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
            import tensorflow as tf
            keras = False  # assume TF1 saved_model
            model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
        elif pb:  # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
            LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
            import tensorflow as tf

            def wrap_frozen_graph(gd, inputs, outputs):
                x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped
                ge = x.graph.as_graph_element
                return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))

            def gd_outputs(gd):
                name_list, input_list = [], []
                for node in gd.node:  # tensorflow.core.framework.node_def_pb2.NodeDef
                    name_list.append(node.name)
                    input_list.extend(node.input)
                return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))

            gd = tf.Graph().as_graph_def()  # TF GraphDef
            with open(w, 'rb') as f:
                gd.ParseFromString(f.read())
            frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
        elif tflite or edgetpu:  # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
            try:  # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
                from tflite_runtime.interpreter import Interpreter, load_delegate
            except ImportError:
                import tensorflow as tf
                Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
            if edgetpu:  # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
                LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
                delegate = {
                    'Linux': 'libedgetpu.so.1',
                    'Darwin': 'libedgetpu.1.dylib',
                    'Windows': 'edgetpu.dll'}[platform.system()]
                interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
            else:  # TFLite
                LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
                interpreter = Interpreter(model_path=w)  # load TFLite model
            interpreter.allocate_tensors()  # allocate
            input_details = interpreter.get_input_details()  # inputs
            output_details = interpreter.get_output_details()  # outputs
        elif tfjs:  # TF.js
            raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
        elif paddle:  # PaddlePaddle
            LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
            check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
            import paddle.inference as pdi
            if not Path(w).is_file():  # if not *.pdmodel
                w = next(Path(w).rglob('*.pdmodel'))  # get *.xml file from *_openvino_model dir
            weights = Path(w).with_suffix('.pdiparams')
            config = pdi.Config(str(w), str(weights))
            if cuda:
                config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
            predictor = pdi.create_predictor(config)
            input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
            output_names = predictor.get_output_names()
        elif triton:  # NVIDIA Triton Inference Server
            LOGGER.info('Triton Inference Server not supported...')
            '''
            TODO:
            check_requirements('tritonclient[all]')
            from utils.triton import TritonRemoteModel
            model = TritonRemoteModel(url=w)
            nhwc = model.runtime.startswith("tensorflow")
            '''
        else:
            raise NotImplementedError(f'ERROR: {w} is not a supported format')

        # class names
        if 'names' not in locals():
            names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
        if names[0] == 'n01440764' and len(names) == 1000:  # ImageNet
            names = yaml_load(ROOT / 'data/ImageNet.yaml')['names']  # human-readable names

        self.__dict__.update(locals())  # assign all variables to self

    def forward(self, im, augment=False, visualize=False):
        """
        Runs inference on the given model

        Args:
          im: the image tensor
          augment: whether to augment the image. Defaults to False
          visualize: if True, then the network will output the feature maps of the last convolutional layer.
        Defaults to False
        """
        # YOLOv5 MultiBackend inference
        b, ch, h, w = im.shape  # batch, channel, height, width
        if self.fp16 and im.dtype != torch.float16:
            im = im.half()  # to FP16
        if self.nhwc:
            im = im.permute(0, 2, 3, 1)  # torch BCHW to numpy BHWC shape(1,320,192,3)

        if self.pt or self.nn_module:  # PyTorch
            y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
        elif self.jit:  # TorchScript
            y = self.model(im)
        elif self.dnn:  # ONNX OpenCV DNN
            im = im.cpu().numpy()  # torch to numpy
            self.net.setInput(im)
            y = self.net.forward()
        elif self.onnx:  # ONNX Runtime
            im = im.cpu().numpy()  # torch to numpy
            y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
        elif self.xml:  # OpenVINO
            im = im.cpu().numpy()  # FP32
            y = list(self.executable_network([im]).values())
        elif self.engine:  # TensorRT
            if self.dynamic and im.shape != self.bindings['images'].shape:
                i = self.model.get_binding_index('images')
                self.context.set_binding_shape(i, im.shape)  # reshape if dynamic
                self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
                for name in self.output_names:
                    i = self.model.get_binding_index(name)
                    self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
            s = self.bindings['images'].shape
            assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
            self.binding_addrs['images'] = int(im.data_ptr())
            self.context.execute_v2(list(self.binding_addrs.values()))
            y = [self.bindings[x].data for x in sorted(self.output_names)]
        elif self.coreml:  # CoreML
            im = im.cpu().numpy()
            im = Image.fromarray((im[0] * 255).astype('uint8'))
            # im = im.resize((192, 320), Image.ANTIALIAS)
            y = self.model.predict({'image': im})  # coordinates are xywh normalized
            if 'confidence' in y:
                box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
                conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
                y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
            else:
                y = list(reversed(y.values()))  # reversed for segmentation models (pred, proto)
        elif self.paddle:  # PaddlePaddle
            im = im.cpu().numpy().astype(np.float32)
            self.input_handle.copy_from_cpu(im)
            self.predictor.run()
            y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
        elif self.triton:  # NVIDIA Triton Inference Server
            y = self.model(im)
        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
            im = im.cpu().numpy()
            if self.saved_model:  # SavedModel
                y = self.model(im, training=False) if self.keras else self.model(im)
            elif self.pb:  # GraphDef
                y = self.frozen_func(x=self.tf.constant(im))
            else:  # Lite or Edge TPU
                input = self.input_details[0]
                int8 = input['dtype'] == np.uint8  # is TFLite quantized uint8 model
                if int8:
                    scale, zero_point = input['quantization']
                    im = (im / scale + zero_point).astype(np.uint8)  # de-scale
                self.interpreter.set_tensor(input['index'], im)
                self.interpreter.invoke()
                y = []
                for output in self.output_details:
                    x = self.interpreter.get_tensor(output['index'])
                    if int8:
                        scale, zero_point = output['quantization']
                        x = (x.astype(np.float32) - zero_point) * scale  # re-scale
                    y.append(x)
            y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
            y[0][..., :4] *= [w, h, w, h]  # xywh normalized to pixels

        if isinstance(y, (list, tuple)):
            return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
        else:
            return self.from_numpy(y)

    def from_numpy(self, x):
        """
        `from_numpy` converts a numpy array to a tensor

        Args:
          x: the numpy array to convert
        """
        return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x

    def warmup(self, imgsz=(1, 3, 640, 640)):
        """
        Warmup model by running inference once

        Args:
          imgsz: the size of the image you want to run inference on.
        """
        warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
        if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
            im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device)  # input
            for _ in range(2 if self.jit else 1):  #
                self.forward(im)  # warmup

    @staticmethod
    def _model_type(p='path/to/model.pt'):
        """
        This function takes a path to a model file and returns the model type

        Args:
          p: path to the model file. Defaults to path/to/model.pt
        """
        # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
        # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
        from ultralytics.yolo.engine.exporter import export_formats
        sf = list(export_formats().Suffix)  # export suffixes
        if not is_url(p, check=False) and not isinstance(p, str):
            check_suffix(p, sf)  # checks
        url = urlparse(p)  # if url may be Triton inference server
        types = [s in Path(p).name for s in sf]
        types[8] &= not types[9]  # tflite &= not edgetpu
        triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
        return types + [triton]

    @staticmethod
    def _load_metadata(f=Path('path/to/meta.yaml')):
        """
        > Loads the metadata from a yaml file

        Args:
          f: The path to the metadata file.
        """
        from ultralytics.yolo.utils.files import yaml_load

        # Load metadata from meta.yaml if it exists
        if f.exists():
            d = yaml_load(f)
            return d['stride'], d['names']  # assign stride, names
        return None, None

__init__(weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True)

Ultralytics YOLO MultiBackend class for python inference on various backends

Parameters:

Name Type Description Default
weights

the path to the weights file. Defaults to yolov8n.pt

'yolov8n.pt'
device

The device to run the model on.

torch.device('cpu')
dnn

If you want to use OpenCV's DNN module to run the inference, set this to True. Defaults to

False

False data: a dictionary containing the following keys: fp16: If true, will use half precision. Defaults to False fuse: whether to fuse the model or not. Defaults to True

Supported format and their usage
Platform weights
PyTorch *.pt
TorchScript *.torchscript
ONNX Runtime *.onnx
ONNX OpenCV DNN *.onnx --dnn
OpenVINO *.xml
CoreML *.mlmodel
TensorRT *.engine
TensorFlow SavedModel *_saved_model
TensorFlow GraphDef *.pb
TensorFlow Lite *.tflite
TensorFlow Edge TPU *_edgetpu.tflite
PaddlePaddle *_paddle_model
Source code in ultralytics/nn/autobackend.py
def __init__(self, weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
    """
    Ultralytics YOLO MultiBackend class for python inference on various backends

    Args:
      weights: the path to the weights file. Defaults to yolov8n.pt
      device: The device to run the model on.
      dnn: If you want to use OpenCV's DNN module to run the inference, set this to True. Defaults to
    False
      data: a dictionary containing the following keys:
      fp16: If true, will use half precision. Defaults to False
      fuse: whether to fuse the model or not. Defaults to True

    Supported format and their usage:
        | Platform              | weights          |
        |-----------------------|------------------|
        | PyTorch               | *.pt             |
        | TorchScript           | *.torchscript    |
        | ONNX Runtime          | *.onnx           |
        | ONNX OpenCV DNN       | *.onnx --dnn     |
        | OpenVINO              | *.xml            |
        | CoreML                | *.mlmodel        |
        | TensorRT              | *.engine         |
        | TensorFlow SavedModel | *_saved_model    |
        | TensorFlow GraphDef   | *.pb             |
        | TensorFlow Lite       | *.tflite         |
        | TensorFlow Edge TPU   | *_edgetpu.tflite |
        | PaddlePaddle          | *_paddle_model   |
    """
    super().__init__()
    w = str(weights[0] if isinstance(weights, list) else weights)
    nn_module = isinstance(weights, torch.nn.Module)
    pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
    fp16 &= pt or jit or onnx or engine or nn_module  # FP16
    nhwc = coreml or saved_model or pb or tflite or edgetpu  # BHWC formats (vs torch BCWH)
    stride = 32  # default stride
    cuda = torch.cuda.is_available() and device.type != 'cpu'  # use CUDA
    if not (pt or triton or nn_module):
        w = attempt_download(w)  # download if not local

    # NOTE: special case: in-memory pytorch model
    if nn_module:
        model = weights.to(device)
        model = model.fuse() if fuse else model
        names = model.module.names if hasattr(model, 'module') else model.names  # get class names
        model.half() if fp16 else model.float()
        self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
        pt = True
    elif pt:  # PyTorch
        from ultralytics.nn.tasks import attempt_load_weights
        model = attempt_load_weights(weights if isinstance(weights, list) else w,
                                     device=device,
                                     inplace=True,
                                     fuse=fuse)
        stride = max(int(model.stride.max()), 32)  # model stride
        names = model.module.names if hasattr(model, 'module') else model.names  # get class names
        model.half() if fp16 else model.float()
        self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
    elif jit:  # TorchScript
        LOGGER.info(f'Loading {w} for TorchScript inference...')
        extra_files = {'config.txt': ''}  # model metadata
        model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
        model.half() if fp16 else model.float()
        if extra_files['config.txt']:  # load metadata dict
            d = json.loads(extra_files['config.txt'],
                           object_hook=lambda d: {int(k) if k.isdigit() else k: v
                                                  for k, v in d.items()})
            stride, names = int(d['stride']), d['names']
    elif dnn:  # ONNX OpenCV DNN
        LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
        check_requirements('opencv-python>=4.5.4')
        net = cv2.dnn.readNetFromONNX(w)
    elif onnx:  # ONNX Runtime
        LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
        check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
        import onnxruntime
        providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
        session = onnxruntime.InferenceSession(w, providers=providers)
        output_names = [x.name for x in session.get_outputs()]
        meta = session.get_modelmeta().custom_metadata_map  # metadata
        if 'stride' in meta:
            stride, names = int(meta['stride']), eval(meta['names'])
    elif xml:  # OpenVINO
        LOGGER.info(f'Loading {w} for OpenVINO inference...')
        check_requirements('openvino')  # requires openvino-dev: https://pypi.org/project/openvino-dev/
        from openvino.runtime import Core, Layout, get_batch  # noqa
        ie = Core()
        if not Path(w).is_file():  # if not *.xml
            w = next(Path(w).glob('*.xml'))  # get *.xml file from *_openvino_model dir
        network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
        if network.get_parameters()[0].get_layout().empty:
            network.get_parameters()[0].set_layout(Layout("NCHW"))
        batch_dim = get_batch(network)
        if batch_dim.is_static:
            batch_size = batch_dim.get_length()
        executable_network = ie.compile_model(network, device_name="CPU")  # device_name="MYRIAD" for Intel NCS2
        stride, names = self._load_metadata(Path(w).with_suffix('.yaml'))  # load metadata
    elif engine:  # TensorRT
        LOGGER.info(f'Loading {w} for TensorRT inference...')
        import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download
        check_version(trt.__version__, '7.0.0', hard=True)  # require tensorrt>=7.0.0
        if device.type == 'cpu':
            device = torch.device('cuda:0')
        Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
        logger = trt.Logger(trt.Logger.INFO)
        with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
            model = runtime.deserialize_cuda_engine(f.read())
        context = model.create_execution_context()
        bindings = OrderedDict()
        output_names = []
        fp16 = False  # default updated below
        dynamic = False
        for i in range(model.num_bindings):
            name = model.get_binding_name(i)
            dtype = trt.nptype(model.get_binding_dtype(i))
            if model.binding_is_input(i):
                if -1 in tuple(model.get_binding_shape(i)):  # dynamic
                    dynamic = True
                    context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
                if dtype == np.float16:
                    fp16 = True
            else:  # output
                output_names.append(name)
            shape = tuple(context.get_binding_shape(i))
            im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
            bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
        binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
        batch_size = bindings['images'].shape[0]  # if dynamic, this is instead max batch size
    elif coreml:  # CoreML
        LOGGER.info(f'Loading {w} for CoreML inference...')
        import coremltools as ct
        model = ct.models.MLModel(w)
    elif saved_model:  # TF SavedModel
        LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
        import tensorflow as tf
        keras = False  # assume TF1 saved_model
        model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
    elif pb:  # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
        LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
        import tensorflow as tf

        def wrap_frozen_graph(gd, inputs, outputs):
            x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped
            ge = x.graph.as_graph_element
            return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))

        def gd_outputs(gd):
            name_list, input_list = [], []
            for node in gd.node:  # tensorflow.core.framework.node_def_pb2.NodeDef
                name_list.append(node.name)
                input_list.extend(node.input)
            return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))

        gd = tf.Graph().as_graph_def()  # TF GraphDef
        with open(w, 'rb') as f:
            gd.ParseFromString(f.read())
        frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
    elif tflite or edgetpu:  # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
        try:  # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
            from tflite_runtime.interpreter import Interpreter, load_delegate
        except ImportError:
            import tensorflow as tf
            Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
        if edgetpu:  # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
            LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
            delegate = {
                'Linux': 'libedgetpu.so.1',
                'Darwin': 'libedgetpu.1.dylib',
                'Windows': 'edgetpu.dll'}[platform.system()]
            interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
        else:  # TFLite
            LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
            interpreter = Interpreter(model_path=w)  # load TFLite model
        interpreter.allocate_tensors()  # allocate
        input_details = interpreter.get_input_details()  # inputs
        output_details = interpreter.get_output_details()  # outputs
    elif tfjs:  # TF.js
        raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
    elif paddle:  # PaddlePaddle
        LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
        check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
        import paddle.inference as pdi
        if not Path(w).is_file():  # if not *.pdmodel
            w = next(Path(w).rglob('*.pdmodel'))  # get *.xml file from *_openvino_model dir
        weights = Path(w).with_suffix('.pdiparams')
        config = pdi.Config(str(w), str(weights))
        if cuda:
            config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
        predictor = pdi.create_predictor(config)
        input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
        output_names = predictor.get_output_names()
    elif triton:  # NVIDIA Triton Inference Server
        LOGGER.info('Triton Inference Server not supported...')
        '''
        TODO:
        check_requirements('tritonclient[all]')
        from utils.triton import TritonRemoteModel
        model = TritonRemoteModel(url=w)
        nhwc = model.runtime.startswith("tensorflow")
        '''
    else:
        raise NotImplementedError(f'ERROR: {w} is not a supported format')

    # class names
    if 'names' not in locals():
        names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
    if names[0] == 'n01440764' and len(names) == 1000:  # ImageNet
        names = yaml_load(ROOT / 'data/ImageNet.yaml')['names']  # human-readable names

    self.__dict__.update(locals())  # assign all variables to self

forward(im, augment=False, visualize=False)

Runs inference on the given model

Parameters:

Name Type Description Default
im

the image tensor

required
augment

whether to augment the image. Defaults to False

False
visualize

if True, then the network will output the feature maps of the last convolutional layer.

False

Defaults to False

Source code in ultralytics/nn/autobackend.py
def forward(self, im, augment=False, visualize=False):
    """
    Runs inference on the given model

    Args:
      im: the image tensor
      augment: whether to augment the image. Defaults to False
      visualize: if True, then the network will output the feature maps of the last convolutional layer.
    Defaults to False
    """
    # YOLOv5 MultiBackend inference
    b, ch, h, w = im.shape  # batch, channel, height, width
    if self.fp16 and im.dtype != torch.float16:
        im = im.half()  # to FP16
    if self.nhwc:
        im = im.permute(0, 2, 3, 1)  # torch BCHW to numpy BHWC shape(1,320,192,3)

    if self.pt or self.nn_module:  # PyTorch
        y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
    elif self.jit:  # TorchScript
        y = self.model(im)
    elif self.dnn:  # ONNX OpenCV DNN
        im = im.cpu().numpy()  # torch to numpy
        self.net.setInput(im)
        y = self.net.forward()
    elif self.onnx:  # ONNX Runtime
        im = im.cpu().numpy()  # torch to numpy
        y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
    elif self.xml:  # OpenVINO
        im = im.cpu().numpy()  # FP32
        y = list(self.executable_network([im]).values())
    elif self.engine:  # TensorRT
        if self.dynamic and im.shape != self.bindings['images'].shape:
            i = self.model.get_binding_index('images')
            self.context.set_binding_shape(i, im.shape)  # reshape if dynamic
            self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
            for name in self.output_names:
                i = self.model.get_binding_index(name)
                self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
        s = self.bindings['images'].shape
        assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
        self.binding_addrs['images'] = int(im.data_ptr())
        self.context.execute_v2(list(self.binding_addrs.values()))
        y = [self.bindings[x].data for x in sorted(self.output_names)]
    elif self.coreml:  # CoreML
        im = im.cpu().numpy()
        im = Image.fromarray((im[0] * 255).astype('uint8'))
        # im = im.resize((192, 320), Image.ANTIALIAS)
        y = self.model.predict({'image': im})  # coordinates are xywh normalized
        if 'confidence' in y:
            box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
            conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
            y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
        else:
            y = list(reversed(y.values()))  # reversed for segmentation models (pred, proto)
    elif self.paddle:  # PaddlePaddle
        im = im.cpu().numpy().astype(np.float32)
        self.input_handle.copy_from_cpu(im)
        self.predictor.run()
        y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
    elif self.triton:  # NVIDIA Triton Inference Server
        y = self.model(im)
    else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
        im = im.cpu().numpy()
        if self.saved_model:  # SavedModel
            y = self.model(im, training=False) if self.keras else self.model(im)
        elif self.pb:  # GraphDef
            y = self.frozen_func(x=self.tf.constant(im))
        else:  # Lite or Edge TPU
            input = self.input_details[0]
            int8 = input['dtype'] == np.uint8  # is TFLite quantized uint8 model
            if int8:
                scale, zero_point = input['quantization']
                im = (im / scale + zero_point).astype(np.uint8)  # de-scale
            self.interpreter.set_tensor(input['index'], im)
            self.interpreter.invoke()
            y = []
            for output in self.output_details:
                x = self.interpreter.get_tensor(output['index'])
                if int8:
                    scale, zero_point = output['quantization']
                    x = (x.astype(np.float32) - zero_point) * scale  # re-scale
                y.append(x)
        y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
        y[0][..., :4] *= [w, h, w, h]  # xywh normalized to pixels

    if isinstance(y, (list, tuple)):
        return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
    else:
        return self.from_numpy(y)

from_numpy(x)

from_numpy converts a numpy array to a tensor

Parameters:

Name Type Description Default
x

the numpy array to convert

required
Source code in ultralytics/nn/autobackend.py
def from_numpy(self, x):
    """
    `from_numpy` converts a numpy array to a tensor

    Args:
      x: the numpy array to convert
    """
    return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x

warmup(imgsz=(1, 3, 640, 640))

Warmup model by running inference once

Parameters:

Name Type Description Default
imgsz

the size of the image you want to run inference on.

(1, 3, 640, 640)
Source code in ultralytics/nn/autobackend.py
def warmup(self, imgsz=(1, 3, 640, 640)):
    """
    Warmup model by running inference once

    Args:
      imgsz: the size of the image you want to run inference on.
    """
    warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
    if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
        im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device)  # input
        for _ in range(2 if self.jit else 1):  #
            self.forward(im)  # warmup

BaseModel

Bases: nn.Module

The BaseModel class is a base class for all the models in the Ultralytics YOLO family.

Source code in ultralytics/nn/tasks.py
class BaseModel(nn.Module):
    '''
     The BaseModel class is a base class for all the models in the Ultralytics YOLO family.
    '''

    def forward(self, x, profile=False, visualize=False):
        """
        > `forward` is a wrapper for `_forward_once` that runs the model on a single scale

        Args:
          x: the input image
          profile: whether to profile the model. Defaults to False
          visualize: if True, will return the intermediate feature maps. Defaults to False

        Returns:
          The output of the network.
        """
        return self._forward_once(x, profile, visualize)

    def _forward_once(self, x, profile=False, visualize=False):
        """
        > Forward pass of the network

        Args:
          x: input to the model
          profile: if True, the time taken for each layer will be printed. Defaults to False
          visualize: If True, it will save the feature maps of the model. Defaults to False

        Returns:
          The last layer of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                pass
                # TODO: feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _profile_one_layer(self, m, x, dt):
        """
        It takes a model, an input, and a list of times, and it profiles the model on the input, appending
        the time to the list

        Args:
          m: the model
          x: the input image
          dt: list of time taken for each layer
        """
        c = m == self.model[-1]  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def fuse(self):
        """
        > It takes a model and fuses the Conv2d() and BatchNorm2d() layers into a single layer

        Returns:
          The model is being returned.
        """
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()
        return self

    def info(self, verbose=False, imgsz=640):
        """
        Prints model information

        Args:
          verbose: if True, prints out the model information. Defaults to False
          imgsz: the size of the image that the model will be trained on. Defaults to 640
        """
        model_info(self, verbose, imgsz)

    def _apply(self, fn):
        """
        `_apply()` is a function that applies a function to all the tensors in the model that are not
        parameters or registered buffers

        Args:
          fn: the function to apply to the model

        Returns:
          A model that is a Detect() object.
        """
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment)):
            m.stride = fn(m.stride)
            m.anchors = fn(m.anchors)
            m.strides = fn(m.strides)
        return self

    def load(self, weights):
        """
        > This function loads the weights of the model from a file

        Args:
          weights: The weights to load into the model.
        """
        # Force all tasks to implement this function
        raise NotImplementedError("This function needs to be implemented by derived classes!")

forward(x, profile=False, visualize=False)

forward is a wrapper for _forward_once that runs the model on a single scale

Parameters:

Name Type Description Default
x

the input image

required
profile

whether to profile the model. Defaults to False

False
visualize

if True, will return the intermediate feature maps. Defaults to False

False

Returns:

Type Description

The output of the network.

Source code in ultralytics/nn/tasks.py
def forward(self, x, profile=False, visualize=False):
    """
    > `forward` is a wrapper for `_forward_once` that runs the model on a single scale

    Args:
      x: the input image
      profile: whether to profile the model. Defaults to False
      visualize: if True, will return the intermediate feature maps. Defaults to False

    Returns:
      The output of the network.
    """
    return self._forward_once(x, profile, visualize)

fuse()

It takes a model and fuses the Conv2d() and BatchNorm2d() layers into a single layer

Returns:

Type Description

The model is being returned.

Source code in ultralytics/nn/tasks.py
def fuse(self):
    """
    > It takes a model and fuses the Conv2d() and BatchNorm2d() layers into a single layer

    Returns:
      The model is being returned.
    """
    LOGGER.info('Fusing layers... ')
    for m in self.model.modules():
        if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
            m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
            delattr(m, 'bn')  # remove batchnorm
            m.forward = m.forward_fuse  # update forward
    self.info()
    return self

info(verbose=False, imgsz=640)

Prints model information

Parameters:

Name Type Description Default
verbose

if True, prints out the model information. Defaults to False

False
imgsz

the size of the image that the model will be trained on. Defaults to 640

640
Source code in ultralytics/nn/tasks.py
def info(self, verbose=False, imgsz=640):
    """
    Prints model information

    Args:
      verbose: if True, prints out the model information. Defaults to False
      imgsz: the size of the image that the model will be trained on. Defaults to 640
    """
    model_info(self, verbose, imgsz)

load(weights)

This function loads the weights of the model from a file

Parameters:

Name Type Description Default
weights

The weights to load into the model.

required
Source code in ultralytics/nn/tasks.py
def load(self, weights):
    """
    > This function loads the weights of the model from a file

    Args:
      weights: The weights to load into the model.
    """
    # Force all tasks to implement this function
    raise NotImplementedError("This function needs to be implemented by derived classes!")

Modules

TODO