Python Model interface
YOLO
YOLO
A python interface which emulates a model-like behaviour by wrapping trainers.
Source code in ultralytics/yolo/engine/model.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
|
__init__(model='yolov8n.yaml', type='v8')
Initializes the YOLO object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
str, Path
|
model to load or create |
'yolov8n.yaml'
|
type |
str
|
Type/version of models to use. Defaults to "v8". |
'v8'
|
Source code in ultralytics/yolo/engine/model.py
export(**kwargs)
Export model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs |
Any other args accepted by the predictors. To see all args check 'configuration' section in docs |
{}
|
Source code in ultralytics/yolo/engine/model.py
info(verbose=False)
Logs model info.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
verbose |
bool
|
Controls verbosity. |
False
|
predict(source, **kwargs)
Visualize prediction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source |
str
|
Accepts all source types accepted by yolo |
required |
**kwargs |
Any other args accepted by the predictors. To see all args check 'configuration' section in docs |
{}
|
Source code in ultralytics/yolo/engine/model.py
reset()
to(device)
Sends the model to the given device.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device |
str
|
device |
required |
train(**kwargs)
Trains the model on a given dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs |
Any
|
Any number of arguments representing the training configuration. List of all args can be found in 'config' section.
You can pass all arguments as a yaml file in |
{}
|
Source code in ultralytics/yolo/engine/model.py
val(data=None, **kwargs)
Validate a model on a given dataset .
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
str
|
The dataset to validate on. Accepts all formats accepted by yolo |
None
|
**kwargs |
Any other args accepted by the validators. To see all args check 'configuration' section in docs |
{}
|